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Abstract 

Turbulent fluctuations in air density can cause significant distortions of 
an electromagnetic signal or image. Density fluctuations can be described 
in terms of air temperature, air pressure, water vapor, and CO2 content. 
We can calculate the refractive index structure constant, Cfi, with the fine- 
scale dynamics of heat, moisture, and momentum diffusion. This helps us 
to quantify the intensity of turbulence-induced refraction. A better under- 
standing of turbulence-induced refraction can provide a means of 
evaluating sensors under various atmospheric conditions or be used in 
the development of turbulence-compensation adaptive optic systems. 
This report annotates one set of equations for the refractive index struc- 
ture constant, C%, taken from the literature. 
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1. Introduction 
Atmospheric optical turbulence can modify the refractive index in air in a 
way that can significantly alter the transmission and propagation of an 
electromagnetic image or signal [1]. Even through weak turbulence, a 
laser beam can become highly scintillated and exhibit strong intensity 
fluctuations if propagated over a long distance [2]. Also, optical turbu- 
lence can reduce the efficiency of laser systems propagated from the 
ground to an object in space [3]. In this regard, Walters [4] presented the 
results of an investigation to develop a data-reduction algorithm for 
sequences of balloon-borne data aimed at providing vertical profiles of 
the refractive index structure constant. Walters asserts that knowledge of 
both turbulence and wind speed profiles could be helpful for the develop- 
ment of turbulence-compensation adaptive optic systems. 

Andreas [5] defines the problem of estimating the refractive index struc- 
ture constant from meteorological point measurements and raises the 
question of whether or not point measurements can be used to predict a 
path-averaged assessment of turbulence-induced refraction. He cites 
Davidson et al [6] for an example of a bulk-layer method applied to 
estimating overwater optical turbulence. Also, Tunick et al [7] reported on 
an experiment wherein radiation and energy budget-derived turbulence 
data are compared to scintillometer-retrieved data taken over a bare soil 
path of 450 m. The semi-empirical models presented in Rachele and 
Tunick [8] and Tunick [9] have also made estimates of the refractive index 
structure constant for comparison to observed turbulence (scintillometer) 
data. However, these types of first-order difference routines can result in 
significant and sometimes extreme errors when point data in space and 
time are used to represent area or path averages (see fig. 1), particularly 
throughout periods before or after sunrise and sunset. 

However, with increasing interest in high-performance computing, 
modeling the intensity turbulence-induced refraction is being 
re-investigated through the use of large eddy simulations [10,11]. The 
refractive index structure constant is recast as a variable that can be 
determined locally, given values for the heat and momentum flux and 
gradients of pressure, temperature, wind speed, and specific humidity. As 
a means of illustrating a calculation of atmospheric optical turbulence of 
this type, an algorithm could be derived from equations collated from 
different articles in the open literature and tested using field experiment 
data. In this report, the algorithm MAOT (Microstructure of Atmospheric 
Optical Turbulence), derived from equations collated from different 
articles in the open literature, is presented and the calculation is tested 
using data generated from observations [12,7]. 



Figure 1. CN2 model 
output compared to 
scintillometer data 
taken at 2 m over a 
horizontal path of 
450 m. 
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Source: A. Tunick, The Refractive Index Structure Parameter/Atmospheric Optical 
Turbulence Model: CN2, U.S. Army Research Laboratory, ARL-TR-1615 (1998). 



2. Model Equations 

2.1      Refractive Index Structure Constant 

Hill [13] gives an expression for the refractive index structure constant as 

2_([n(x)-n(x + r)]2) _Dn(r) 

where n is the refractive index in air, (x) and (x + r) denote position in 
space, and the ensemble mean variance \[n(x)-n(x + r)]2) is the scalar 
structure function. Batchelor [14] gives a connection between the function, 
Dn(r), in r space, and the spectrum for the scalar, Tn(k), in k space as 

Dn(r) = 2J~[l-™^]rn(k)dk, (2) 

where k is the wave number. Through dimensional analysis, the scalar 
structure function and the scalar spectrum can be expressed in terms of 
the dissipation rate of turbulent kinetic energy, e, and the diffusive dissi- 
pation rate of the scalar variance, Xn. Hill [13] gives Xn as 

In = 2dn(\Vn\2) , (3) 

where, dn ~ d}lr assuming that the diffusion coefficients for the scalars 
refractive index and potential temperature are effectively the same [15]. 
Then 

dn = dh = {v/ff)/{de/dz). (4) 

The variable e can be expressed as 

e = (g/e)(w'e')-(u'w')(dU/dz) , (5) 

where g is the acceleration due to gravity, (u w ) is the ensemble mean 
eddy transport of horizontal momentum, (w' &) is the ensemble mean 
kinetic heat flux, d6/dzis the vertical gradient of potential temperature, 
and dll/dz is the vertical gradient of the total horizontal wind [16]. 

The resulting expressions for the scalar structure function and the scalar 
spectrum are 

Dn(r) = bnxne-^r2^ , (6) 

and 

r„(k) = ßnx„e*k-% , (7) 



given the Kolmogorov 2/3- and -5/3-dependencies for r and k, respec- 
tively, where bn and ßn are constants (Hill [17,18] gives ßn = 0.72). When 
equations (6) and (7) are substituted into equation (2), bn is given as 

_   6 
«■/ 

cos (x) 

(X) % dx = ±ni/3)ßn (8) 

Relationships among the gamma functions, T(p), for 0 < p < 1 are given 
by Weast et al [19]. Finally, the expression for the structure constant in 
equation (1) can be rewritten as 

C^ = 2bndh£^dn/dz)2 , (9) 

where bn = 1.736. 

2.2      Refractive Index of Air and Its Partial Derivatives 

The refractive index of air for the visible and near-infrared (3650 to 
6328 A) region of the electromagnetic spectrum is expressed [20,21] in 
terms of wavelength (in micrometers), barometric pressure (P, in milli- 
bars), temperature (T, in degrees Kelvin), and vapor pressure (e, the 
partial pressure of the atmosphere due to water vapor content, also in 
millibars) in the form presented by Andreas [5]: 

n7„ = 1.0 + m1 y + [ml + m2)i^ xlO" (10) 

where temperature, T, is defined as T = 6 (P/Ps)^
2/7^; Ps is normally de- 

fined as sea level barometric pressure, 

»!, 23.7134 + 6839.397 + 45.473 
130.0-a2    38.9-a2 ' 

and 

m2 = 64.8731 + 0.58058 o2 - 0.007115 a4 + 0.0008851 a6 , 

where o- 1.0/A C"m_1). 

In the infrared region of the electomagnetic spectrum from 78,000 to 
190,000 A [20,22], the refractive index is expressed in the form 

(11) 

(12) 

(P-e) 
nii     ^     + ft,- xlO" nir = 1.0 + 

where the refractive index of water vapor is given as 

957.0 - 928.0 (T/T0)
OA (X - 1.0) 

(13) 

= Q 
3.747 x 10e 

\0.17 1.03(r/To)
ai/ - 19.8X2 + 8.2X4 - 1.7X8     12,449.0 -X1 (14) 



where Q = 0.2166847 e/T, absolute humidity is in kg/m3, and 

_ 10.0 (Mm) 
A (urn)    ' (15) 

In equations (10) and (13), vapor pressure, e, in millibars, can be 
expressed [23] in terms of specific humidity, q, in units of grams of water 
vapor content per kilogram of moist air (dry air and water vapor com- 
bined) in the following form: 

mjma + {l-mjma) q ' (16) 

where specific humidity is defined [24] as 

q P        100.0 ep{   R*   [T0     Tjj' (17) 

where es = 6.1078 mbar is the saturation vapor pressure at 0.0 °C; mw and 
ma are the molecular weights of water vapor and of dry air, respectively; 
Lv = 2.5008 x 106 + 2.3 x 103 T (T in degrees Celsius) is the latent heat of 
vaporization; R* = 8314.32 J "K^kmol-1 is the universal gas constant; and 
RH is relative humidity in percent. 

The derivatives of the refractive index given by equations (10) and (13) 
take the form 

dn _ dn_dT_ + dnde_ 
dz     dT dz + de dz ' (18) 

so that 

dn7ti ^(-m^-K-m^JljxlO-6, (19) 

where 

dT        T2 RVmw eXPl^/mw (T0      TJIX [^T J • (20) 

The partial derivative of n with respect to vapor pressure takes the form 

-#=      \    lJxlO 6- (21) 

The partial derivative of vapor pressure takes the form 

de_ _ de_ dq_ 
dz ~ dq dz ' (22> 



where 

de mjma P 

[mw/ma +(1.0-mw/ma)qY 
(23) 

The partial derivative of T in terms of the scalar potential temperature 
takes the form 

3T _ 3z     7.0    p2 
ps]

5/7dp 
\p dz 

i?yh (24) 

Equations (13) and (14) can be rewritten as 

nir = 1 + P 
T m1^ + (0.21668/(T,X) - Wj) |r xlO -6 

(25) 

where 

\0.4 957.0-928.0 (T/T0)
U-4(X-1.0) ,   3.747xlO6 

\0.17 1.03 {T/T0)
u    - 19.8X2 + 8.2X4 - 1.7X*     12449.0 - X" 

■    (26) 

The partial derivative of n„- with respect to temperature can now take the 
form 

9T ■m 1 T2 Tz     T 
2 (0.216681^]-^/!)^^ xlO" (27) 

where 

3L4] 
3T 

01751 {T_ 
T, T O \       0 

- 0.83 
957.0 - 928.0 T 0.4 

(X-1.0) 

J   '      -19.8X2 + 8.2X  -1.7X8 1.03 
Tr 

371.2 I T 
273.15   T 

0.6 

T   \0-17 7 4 >A    ' 1   >      - 19.8X2 + 8.2X  - 1.7X8 1.03 
T 

(28) 

Lastly, the partial derivative of nir with respect to vapor pressure takes the 
form 

de 
(0.21668^]-?«!) 

T 
xlO ~6 (29) 



3. A Model of the Microstructure of Atmospheric Optical 
Turbulence 

The equations presented in sections 2.1 and 2.2 were programmed in 
FORTRAN to produce a computer model called MAOT. The MAOT 
model computes the refractive index structure constant, given values for 
the heat and momentum flux and gradients of pressure, temperature, 
wind speed, and specific humidity as input. Table 1 gives values for the 
model's physical constants. Table 2 gives the results of testing the MAOT 
calculation for different conditions of atmospheric stability. The model 
input is generated from observed surface layer data that were reported by 
Tunick et al [7] except for the last column, which was derived from the 
micrometeorological data reported by Stenmark and Drury [12]. 

Values of C2 have been generally observed to range from about 10"12 to 
10~16 m~2/3. The values of C% for the column labeled Unstable (approxi- 
mately 10"12 m"2/3) imply that the turbulence is intense, and considerable 
image blurring or signal distortion could occur (similar to that seen when 
one looks over an open field or a paved lot on a hot day). In contrast, 
the values of C 2 for the column labeled Weakly stable (approximately 
10~16 m~2/3 ) imply that the intensity of the optical turbulence might be 
considered negligible, except for where a light beam is transmitted over a 
long distance. Higher values of C2 given in table 1 correlate with higher 
(absolute) values of kinematic heat flux and potential temperature gradi- 
ent. The lower values of C 2 given in table 1 correlate with higher values 
of momentum flux and wind speed gradient. This observation makes the 
point that surface layer stability and turbulence are generally lessened by 
the effects of wind shear and surface stress. 

Table 1. 
Microstructure of 
atmospheric optical 
turbulence model 
physical constants. 

Parameter Symbol Unit Amount 

Kolmogorov or Corrsin constant b„ — 1.736 
Acceleration due to gravity g m/s2 9.8 
Temperature scaling To °K 273.15 
Molecular weight of water vapor m-w g/mol 18.016 
Molecular weight of dry air ma g/mol 28.966 
Universal gas constant R* J °iC1 kmot1 8314.32 
Saturation vapor pressure at 0.0 °C es mbar 6.1078 
Reference level pressure Ps mbar 1013.25 



Table 2. Microstructure of atmospheric optical turbulence model input and output.* 

Unit 

Condition of a tmospheric stability 

Parameter Unstable Weakly unstable Weakly stable Stable 

Kinematic heat flux °Km/s -0.470 -0.055 0.014 0.073 
Momentum flux m2/s2 -0.164 -0.217 -0.042 -0.191 
Potential temperature gradient °K/m -0.670 -0.124 0.010 0.310 

Wind speed gradient f/m 0.330 0.510 0.303 0.812 

Specific humidity gradient §/» -1.133 x ICH -6.667 x lO"6 1.000 x 10^ -2.500 x 10^ 

Pressure gradient mbar/m -0.10 -0.10 -0.10 -0.10 

Model output 

C,2 visible m-2/3 1.633 xl(T12 3.382 x 10"14 8.590 x 10"16 1.176 x 10-13 

Q?IR m-2/3 1.763 x 1(T12 3.479 x 10"14 5.283 x 10"15 1.154 xlO"13 

*Electromagnetic wavelength—visible 0.94 \im 
Electromagnetic wavelength—IR 10.6 [im 

4. Summary 
The propagation of a light beam through the atmosphere is affected by 
random fluctuations in the refractive index of air [24] and it is these 
fluctuations or discontinuities that cause optical turbulence. The refrac- 
tive index structure parameter is the quantitative measure for such turbu- 
lence. In this report, I have presented the algorithm MAOT, derived from 
equations collated from different articles in the open literature. The 
MAOT calculation was tested using kinematic heat flux and momentum 
flux data generated from observations. MAOT was regarded as a step 
taken toward enhancing calculations of refractivity in the surface layer 
through the diurnal cycle. 
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